Mice deficient in Mkp-1 develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia.
نویسندگان
چکیده
The mitogen-activated protein (MAP) kinases are involved in cellular responses to many stimuli, including hypoxia. MAP kinase signaling is regulated by a family of phosphatases that include MAP kinase phosphatase-1 (MKP-1). We hypothesized that mice lacking the Mkp-1 gene would have exaggerated chronic hypoxia-induced pulmonary hypertension. Wild-type (WT) and Mkp-1(-/-) mice were exposed to either 4 wk of normoxia or hypobaric hypoxia. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as demonstrated by the ratio of the right ventricle to the left ventricle plus septum weights [RV(LV + S)], and greater vascular remodeling. However, the right ventricular systolic pressures, the RV/(LV + S), and the medial wall thickness of 100- to 300-microm vessels was significantly greater in the Mkp-1(-/-) mice than in the WT mice following 4 wk of hypobaric hypoxia. Chronic hypoxic exposure caused no detectable change in eNOS protein levels in the lungs in either genotype; however, Mkp-1(-/-) mice had lower levels of eNOS protein and lower lung NO production than did WT mice. No iNOS protein was detected in the lungs by Western blotting in any condition in either genotype. Both arginase I and arginase II protein levels were greater in the lungs of hypoxic Mkp-1(-/-) mice than those in hypoxic WT mice. Lung levels of proliferating cell nuclear antigen were greater in hypoxic Mkp-1(-/-) than in hypoxic WT mice. These data are consistent with the concept that MKP-1 acts to restrain hypoxia-induced arginase expression and thereby reduces vascular remodeling and the severity of pulmonary hypertension.
منابع مشابه
Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats
Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...
متن کاملAbsence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells.
BACKGROUND Cyclooxygenase-2 (COX-2) is upregulated in pulmonary artery smooth muscle cells (PASMCs) during hypoxia and may play a protective role in the response of the lung to hypoxia. Selective COX-2 inhibition may have detrimental pulmonary vascular consequences during hypoxia. METHODS AND RESULTS To investigate the role of COX-2 in the pulmonary vascular response to hypoxia, we subjected ...
متن کاملPulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension.
Prostacyclin synthase (PGIS) is the final committed enzyme in the metabolic pathway leading to prostacyclin (PGI2) production. Patients with severe pulmonary hypertension have a PGIS deficiency of their precapillary vessels, but the importance of this deficiency for lung vascular remodeling remains unclear. We hypothesized that selective pulmonary overexpression of PGIS may prevent the developm...
متن کاملChronic hypercapnia downregulates arginase expression and activity and increases pulmonary arterial smooth muscle relaxation in the newborn rat.
In rats, chronic hypercapnia has been reported to ameliorate hypoxia-induced pulmonary hypertension in newborn and adult and to enhance endothelium-dependent vasorelaxation in adult pulmonary arteries. The underlying mechanisms accounting for chronic hypercapnia-induced improvements in pulmonary vascular function are not understood. Hypothesizing that downregulation of arginase activity may be ...
متن کاملTempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress
Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 5 شماره
صفحات -
تاریخ انتشار 2010